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LETTER TO THE EDITOR 

A Nambu representation of incompressible hydrodynamics 
using helicity and enstrophy 

Peter N6vk and Richard Blender 
Freie UniversitZt Berlin, lnstihlt fi Meleorologie. Thielallee 50, D-14195 Berlin, Federal 
Republic of Germany 

Received IO September 1993 

Abstract. Nambu mechanics generaliles discrete classical Hamiltonian dynamics. Using the 
Euler equations for a rotating rigid body, the connection between this represenlation and non- 
canonical Hamiltonian mechanics is shown. Nambu mechanics is extended to incompressible 
ideal hydrodynamical fields using energy and helicily in ID (ensbophy in 20). The Hamiltonian 
and the Casimir invariants of the non-canonical Hamiltonian theor$ delermine the dynamics in 
a non-singular trilinear bracker 

Nambu (1973) proposed a general representation of classical systems obeying Liouville's 
theorem. Nambu's mechanics is characterized by the appearance of several conserved 
quantitites and by the possibility of representing systems with an odd number N of degrees of 
freedom. In~the most simple case, N = 2, this reduces to canonical Hamiltonian dynamics. 
The relation for general N has been investigated and in 1978 K6lnay and Tasc6n mentioned 
that '. . . Nambu mechanics remains independent from the previously known mechanics'. 
Unfortunately, very few physical systems are known which can be brought in Nambu form. 
The most well known are the Euler equations of the rotating rigid body ("bu 1973). 

In the last decade, non-canonical Hamiltonian dynamics has been extensively used to 
investigate non-dissipative hydrodynamics (for adiabatic compressible fluids see Momson 
and Greene (1980), and for incompressible fluids, see Olver (1982)). Applications pertain 
to nonlinear stability analysis ( h o l d  1969, Holm et af 1985), symmetries (Olver 1982), 
and approximation theory (geophysical fluid dynamics is reviewed by Salmon (1988). see 
also N6vir (1993)). This theory, which equally applies to systems with an odd number of 
degrees of freedom, involves an antisymmetric Poisson tensor which may depend on the 
dynamical variables. In case this tensor is singular, additional conserved quantities denoted 
as distinguished or Casimir invariants act as constraing on the dynamics in thestate space. 

The non-canonical Hamiltonian theory of perfect fluid dynamics (Olver 1982) for the 
Eulerian variables is characterized by the existence of Casimir functionals t i e  helicity 
(30) and enstrophy (zD). Motivated by Nambu's approach, we propose an extension of his 
theory to hydrodynamical fields in which these Casimir functionals appear in a trilinear 
antisymmetric bracket on the same level as the Hamiltonian. 

The Euler equations of a free rigid body mentioned above are quoted frequently as an 
example for a non-canonical Hamiltonian system (Holm et al 1985). With the components 
of the angular momentum around the principal axes Li, i = I , .  ,. . , 3  and the moments of 
inertia It ,  these equations read as 
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The Euler equations can be written in a non-canonical form 
a H  = J..- '' a r ,  

j 

where the Hamiltonian H is given by the total energy 

and the Poisson-tensor J reads as 
J = (  Ls 0 -L3 0 -it). 

-L2 L1 0 
In case J is singular, further conserved quantities denoted as distinguished functions or 
Casimirs C can exist which are defined in general by 

The Casimirs of the Euler equations are arbitrary functions C = C(L2) of the length of the 
angular momentum vector L. 

The Euler equations can be written in Nambu representation that uses a Casimir, 
G = L2/2, as a second conserved quantity besides H ("bu 1973): 

The Levi-Civita symbol &ijk could be denoted as the constant non-singular Poisson-tensor 
of rank 3. 

The non-canonical operator J can be obtained by 

which relates Nambu mechanics to noncanonical Hamiltonian mechanics. As the roles of 
H and G are interchangeable, an altemative to the non-canonical representation is 

which uses G as the generator of the time-evolution with the operator 

In incompressible hydrodynamics enstrophy (ZD) and helicity (3D) are known as integral 
conserved quantities besides energy. These two quantities which originate in the particle 
relabelling symmetry of the Lagrangian description are Casimiir functionals of non-canonical 
Eulerian fluid mechanics. Therefore, it seems reasonable to write the hydrodynamical 
equations in a Nambu representation which involves total energy and the corresponding 
Casimir functional. 
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Incompressible inviscid fluid dynamics in 3D is governed by the vorticity equation 

- = E .  vu - ~ u .  v< 
at (12) 

and V '21 = 0, where U denotes the velocity and E = V x U is the vorticity vector. The 
total energy 

and the (total) helicity (Moffatt 1969) 

h = -  d 3 x < . u  
2 ' J  

are conserved (it i s  assumed that U vanishes at infinity). 
U =  -V x A, with V . A = O .  

A is the vector potential, 

The non-canonical form (Olver 1986) of the vorticity equation is 

with the antisymmetric operator 
J(<) = -V x (E  x V x (.)). 

The derivative of the energy with respect to the vorticity is given by SH/S.$ = -A. 

We propose that the vorticity equation could be written as 
Helicity is a Casimir functional, i.e. JShISE = 0, because Sh/SE = U. 

at (17) 

with 

K ( I , ~ ) = - V X [ ( V X ( ~ ) ) X ( V X ( ~ ) ) I .  (18) 
K is a constant bilinear and antisymmetric operator which clearly yields (16). An 

arbitrary functional F = F[E] evolves according to 
aF 6F Sh SH - = - /d3x(V x -) x (V x -). (V x -) = { F , h , H } 3 D .  
at  ac SE S E  

(19) 

In @e laSt expression a generalized trilinear Poisson bracket has been introduced, which 
is antisymmetric in all its arguments. Helicity is no longer a hidden conserved quantity but 
enters the dynamics on the same level as the Hamiltonian. Obviously, (17) incorporates 
the non-canonical Hamiltonian representation and all applications of this theory can be 
performed starting from (17). For example, space translations are generated by the Kelvin 
momentum (Lamb 1932, p 152) according to the theorem of Noether 

Using SM/SE = - f ( ~  x I) with a 3 x 3 unit matrix I, M determines 

-VF = (F, h,  &f)3D. (21) 
In two dimensions, incompressible hydrodynamics is governed by the vorticity equation 

for < = e7 
a t  - = - U .  vy 
at  
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together with V . U = 0. In non-canonical Hamilton representation, this reads as 

where 3 is the Jacobi-operator, 3 ( a ,  b)  = a,aa,b - a,aa,b. The Hamiltonian is 

where 7+ is the stream function for U, U = k x V7+ (k denotes the z-unit vector). The 
derivative of H with respect to f is SHISC = -@. 

Casimir functionals are given by h e  integrals of arbitrary functions f of the vorticity 

C =~ d*Xf(<) (25) s 
among them the most well known is enstropby 

The ZD vorticity equation can be expressed using the enstrophy in a way similar to (17) 

at 
Here. enstrophy could be replaced by any Casimir C (25) provided that 3 is replaced by 
(fy' 3. 

Time-evolution of an arbitrary functional F = F [ ( ]  in 2D reads as 

with a trilinear antisymmetric bracket. One could consider the operator K in (18) as a 3D 
analogue of the U) Jacobi operator 3. 

The Nambu brackets (19) and (28) satisfy the Jacobi identity when they are reduced to 
a Poisson bracket by keeping one argument, e.g. h, fixed 

(29) 
In summary, we have extended Nambu mechanics to incompressible hydrodynamics. 

The result is a generalization of the non-canonical Hamiltonian formulation, whereby the 
singular Poisson bracket is replaced by a non-singular multilinear antisymmetric bracket. In 
the new formulation, the Casimirs of the Hamiltonian theory (helicity in 3D and enstrophy in 
2D) determine the dynamics on the same level as the Hamiltonian. The Nambu representation 
involves the two quantities which through their cascades determine the statistical behaviour 
of turbulent flows (for a recent reference to the helicity cascade, see Sanada (1993)). Work 
on compressible flows is in progress and will be published elsewhere. 

We are grateful to the referee for the hint that the trilinear brackets satisfy the Jacobi identity. 
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